
Self-Tuning the Parameter of Adaptive Non-Linear
Sampling Method for Flow Statistics

Chengchen Hu1,2, Bin Liu1

1Department of Computer Science and Technology

Tsinghua University

{huc,liub}@tsinghua.edu.cn
2State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications

Abstract—Flow statistics is a basic task of passive measurement
and has been widely used to characterize the state of the net-
work. Adaptive Non-Linear Sampling (ANLS)is one of the most
accurate and memory-efficient flow statistics method proposed
recently. This paper studies the parameter setting problem for
ANLS. A parameter self-tuning algorithm is proposed in this
paper, which enlarges the parameter to a equilibrium tuning
point and renormalizes the counter when counter overflows. It is
demonstrated that the estimation error of ANLS with parameter
self-tuning algorithm is improved by about 89 times for real trace,
70 times for Pareto traffic scenario and 370 times for exponential
traffic, while giving the same memory size.

Index Terms—Network measurement, flow statistics, counting,
unbiased estimation

I. INTRODUCTION

Network measurement provides many analyses including

traffic matrix, flow volumes, flow size distributions, user

sessions’ duration and etc., which contributes to our capac-

ity in network management and traffic engineering [5, 24].

Fundamentally, flow statistics is the main task of network

measurement, which involves counting number of packets in

terms of flows over a period of time [15]. A flow refers to a

set of packets that have the same n-tuple value in the header

fields.

With the continuous increase of Internet link speed and

the number of flows, flow statistics has become a challenging

task due to the demanding requirements on both memory size

and memory bandwidth. Off-the-shelf memory is either low

speed or low capacity. For instance, large capacity DRAM

maybe large enough to hold all the flow records but its low

speed disables the frequent accessing/updating rate to the

counters, while fast SRAM supports high speed processing

but is susceptible to overflow due to its limited memory

capacity. Generally, there are two categories of solutions in

the literature.

The first one sets full-size counters in DRAM, and its key

problem is how to slow down the updates to the DRAM

This work is supported by NSFC (60625201, 60873250), the Cultivation
Fund of the Key Scientific and Technical Innovation Project, MoE, China
(705003), the Specialized Research Fund for the Doctoral Program of Higher
Education of China (20060003058), 863 high-tech project (2007AA01Z216,
2007AA01Z468) and open project of state key Laboratory of Networking and
Switching Technology (SKLNST-2008-1-05).

counters in order to match the I/O (Input/Output) speed

of DRAM. Several combined SRAM&DRAM (SD) counter

architectures fall in this category [21, 22, 25], whose basic

idea is to store lower order bits of each counter in SRAM

and all the counter bits in DRAM. SD solutions build a good

architecture to set measurement counters, however, it has its

limitations on 1) slow read access speed, 2) significant traffic

over system bus, and 3) requirements of extra pin connections

and board area.

The second one uses sampling technology to reduce the re-

quired counter size in order to keep the counters in SRAM [4,

8, 9, 12, 13]. The widely used static sampling (SS) method [4]

selects packets with the same sampling rate/probability p for

all the flows during the measurement interval. With SS, the

probability of a flow with only one packet to be missed

is much larger than the one of a flow with 10000 packets

in the same link. Theoretical and experimental evaluation

demonstrated that SS exhibits intolerably high relative error

for small flows [13]. In our previous work [12, 13], we propose

Adaptive Non-Linear Sampling (ANLS) method to adjust the

sampling rate and control the estimation error of both large

and small flows. It is demonstrated that ANLS is the most

accurate flow statistics method given the same memory size

compared with other related SRAM-based work [2, 7, 8, 10].

ANLS has a predefined control parameter a, which decides

the measurement accuracy and counting range. Enlarging

a decreases the counter overflow possibility, but decreases

the measurement accuracy meanwhile. To avoid the possible

overflow of the counters, a user would conservatively select a

large a for large counting range and suffer from unnecessary

accuracy sacrifice. In this paper, we study the performance

variation of ANLS under different parameter settings and

propose a parameter self-tuning method for ANLS during the

measurement interval to strike the tradeoff between measure-

ment accuracy and counting range.

The rest of the paper is organized as follows. Section II

briefly reviews ANLS and describes the problem and idea of

parameter tuning for ANLS. In Section III, we investigate the

method to determine equilibrium point for parameter tuning.

Section IV presents the counter renormalization processing.

Section V gives the evaluations and Section VI describes the

related work. Finally in Section VII, we conclude the paper.

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.19

16

II. ANLS WITH PARAMETER SELF-TUNING

A. A brief review of ANLS

The main notations employed in this paper are illustrated

in Table I. The counting process of original ANLS can be

presented as c ← c + 1 with probability p(c), where c is

the counter value and p(c) is calculated from the following

equations with a pre-defined parameter 0 < a < 11.

p(c) =
1

(1 + a)c−1
; (1)

The sampling rate of ANLS p(c) is adjusted according to

the counter value and there is no need to predict or estimate

the flow size distribution.

It is proven in [12, 13] that, the unbiased estimation of

ANLS is f(c) which is formulated in (2).

f(c) = [(1 + a)c − 1]/a. (2)

With this estimation, the relative error2 of flow size estima-

tion (when the real flow size is n) can be presented as

e =
√

(1 − 1/n)a/2. (3)

The relative error e converges to
√

a/2 when n → ∞. It is

also demonstrated that the counter value is tightly bounded by

f−1(n) =
log(1 + an)

log(1 + a)
. (4)

From (4), we observe that f−1(n) is an increasing concave

function of real flow size indicating the scalable memory

(counter) consumption of ANLS.

Although there are some literatures which study the ad-

justment of sampling rate to control the estimation error of

small flows [2, 16], their input to tune the sampling rate is not

accurate themselves. ANLS uses accurate counter value as the

input to adjust sampling rate and derives the general theoretical

principles on how to tune the sampling function. The most

related work to ANLS is [18], which proposed a technique

to count large number in small registers. However, ANLS

gives a generic theoretical study on how to select sampling

functions and present practical experiments to demonstrate the

performance.

B. Problem statement

There are two major performance metrics for flow statistics.

One is relative error and the other is counting range (related to

memory consumption). Relative error measures the accuracy

of a flow statistics method and can be quantified by coefficient

of variation as shown in (3) for ANLS. Counting range is the

largest flow size that a flow statistics method could record. The

larger the counting range is, the more efficient the memory

consumption is. For full size counter (like SD solution), the

counting range is the largest counter value; and for ANLS, the

counting range is

1In this paper, we study a special case of ANLS as discussed in [12]. The
conclusion can be easily extended to the general form of ANLS presented
in [13].

2Actually, we use the coefficient of variation for relative error estimation.

TABLE I
TABLE OF NOTATIONS

Notations Descriptions
a a predefined parameter of ANLS, 0 < a < 1
c the counter value
p(c) the probability for counter update according to c
f(c) unbiased estimation
n the actual flow length
n̂ the estimated flow length
e coefficient of variation used for relative error evaluation
Ue Accuracy Utility
Ub Counting Range Utility

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Parameter a

R
el

at
iv

e
er

ro
r

Fig. 1. Relative error vs. parameter a when flow size n = 5000.

B = [(1 + a)c − 1]/a. (5)

It is indicated by (3) that small a leads to small error, but

it is also demonstrated by (5) that ANLS with small a has

a small counting range and is easy to overflow the counters.

The relative error curve and counting range curve are depicted

in Figure 1 and Figure 2, respectively. Obviously, there is

a tradeoff for ANLS between small relative error and large

counting range by a configuration on parameter a.

In a practical flow statistics setting, the counter should not

be overflowed during a single measurement interval. There-

fore, a is always set to support the statistics for the largest

possible flow size no matter what the actual largest flow size is.

For instance, in the worst case, there can be about 31,250,000

packets for a OC-192 link in a one-second measurement

interval, while our experiment shows that the actual largest

flow in a real trace download form NLANR [19] has only

720,192 packets in a same interval. The conservative setting

of a based on the theoretical largest flow size greatly degrades

the accuracy performance. The degradation of relative error

can be tens of times worse as demonstrated in Section V.

C. Parameter self-tuning algorithm

If we set the parameter a based on the actual flow size,

the best and ideal tradeoff between accuracy and counting

range would be achieved. Therefore, we study the method to

adjust the parameter a during the statistic process in order

171717171717171717171717

0 0.05 0.1 0.15 0.2
10

0

10
5

10
10

10
15

10
20

10
25

Parameter a

C
ou

nt
in

g
ra

ng
e

Fig. 2. Counting range vs. parameter a when the largest counter value is
256 (the counter is 8-bit width).

to provide the best and ideal tradeoff between accuracy and

counting range. We patch the original ANLS method by adding

a parameter self-tuning algorithm. The pseudo-code of ANLS

with self-tuning algorithm is described in Algorithm 1.

Algorithm 1 ANLS with parameter self-tuning algorithm

a1 = 0;

while a packet comes do
extract the flow id. i the packet belongs to;

update corresponding counter i using ANLS with param-

eter a1;

if counter overflows then
//self-tuning algorithm

calculate the adjustment of parameter a2;

a1 = a2;

renormalize the counter value;

end if
end while

As shown in Figure 1 and Figure 2, with the increase

of parameter a, the relative error, as well as the counting

range of flow size, is monotonously increasing. To provide

precise accuracy for flow statistics with given counter size

in the beginning, the parameter a is first set to be zero (so

p(c) = 1). In this way, ANLS counts every incoming packet

and has no error. When the counter overflows, a is adjusted

from a1to a larger value a2 and the counter is renormalized to

a smaller value according to the reconfigured a2. The further

update of the counter will be according to ANLS with the

new parameter a2. The renormalization of the counter value

and the reconfiguration of a1 to a2 is triggered whenever the

counter overflows. The inverse estimation of the flow size3

can be obtained from (2) based on the latest a. To implement

the self-tuning algorithm, we need to solve the following two

problems:

• What value should the parameter adjust to, i.e., how to

3The inverse estimation of the flow size is c if a = 0 in the end of the
measurement interval

calculate a2 in Algorithm 1? In Section III, we proposed a

method to adjust parameter by seeking for the equilibrium

tuning point.

• How to renormalize the counter when the counter over-

flows according to a1 and a2? The renormalization should

keep the inverse estimation accurate and the method is

described in Section IV.

III. EQUILIBRIUM TUNING POINT

In this section, we study how to determine the equilibrium

point for tuning the parameter when the counter overflows. We

first define Accuracy Utility (Ue) and Counting Range Utility
(Ub) during the parameter adjustment.

Suppose the parameters before and after renormalization are

a1 and a2, respectively. The Accuracy Utility is defined as

the following equation, where Emax is the maximum tolerant

relative error4.

Ue =
Emax − e2

Emax − e1
; (6)

e1 =
√

(1 − 1/n)a1/2; (7)

e2 =
√

(1 − 1/n)a2/2. (8)

e1 and e2 are the relative error before and after the parameter

tuning. e1 is always larger than e2 and thus Ue is between zero

and one.
The Counting Range Utility Ub is defined as

Ub =
B2 − B1

B2
; (9)

B1 = [(1 + a1)
c − 1]/a1; (10)

B2 = [(1 + a2)
c − 1]/a2. (11)

B1 and B2 are the counting range before and after the

parameter tuning. B2 is always larger than B1 and thus Ub

is between zero and one too.
Before the parameter tuning, the accuracy utility is one and

the counting range utility is zero. As shown in Figure 3, with

the increase of parameter, the counting range utility increases

and the accuracy utility decreases. When the two utility curves

meets, the cross point is the equilibrium tuning point where

we aim to adjust the parameter. The reason to select this

equilibrium point as the tuning point is that the tuning of the

parameter keeps the ANLS in a stable state, which achieves

balance between accuracy metric and counting range metric.

Ue = Ub (12)

Figure 3 is an illustration of the calculation of equilibrium

tuning point when a1 = 0. Given the counter width, we can

use bisection method to pre-compute the equilibrium tuning

point as shown in Algorithm 2. Instead of recording the actual

value of tuning point associated with the counter, a further 4-

bit identification is associated with each counter to indicate

the value of a. When the counter overflows, the identification

is increased by one. Table II illustrates the computation results

using Algorithm 2, when 12-bit counters are utilized.

4The relative error should not exceed this threshold. We make Emax = 0.1
in this paper.

181818181818181818181818

Algorithm 2 Finding the tuning point

float ETP(float a1, int c)

{
a2=0;bound=0.01;up=0.1;down=a1;

while abs(f)>bound do
a2=(up+down)/2;

n=((1+a1)ˆc-1)/2;

e1=sqrt((1-1/n)*a1/2);

e2=sqrt((1-1/n)*a2/2);

Ue=(Emax-e2)/(Emax-e1);

B1=((1+a1)ˆc-1)/a1;

B2=((1+a2)ˆc-1)/a2;

Ub=(B2-B1)/B2;

f=Ub-Ue;

if f>0 then
down=a2;

else
up=a2;

end if
end while
return a2;

}

TABLE II
TUNING POINT

Identification Parameter Counting range relative error
0000 0.0006 11,874 0.0168
0001 0.0011 77,708 0.0239
0010 0.0017 472,359 0.0289
0011 0.0022 2,853,806 0.033
0100 0.0027 16,331,666 0.0364
0101 0.0031 86,998,135 0.0394
0110 0.0035 427,246,130 0.042
0111 0.0039 1,868,747,977 0.0443
1000 0.0043 6,860,213,041 0.0463
1001 0.0046 21,271,805,015 0.0479
1010 0.0048 49,831,262,588 0.0492
...

IV. RENORMALIZATION

Again, suppose the counter value and the parameter right

before parameter tuning are c1 and a1, respectively. Since the

parameter tuning is only activated when the counter overflows,

c1 = cmax, where cmax is the maximum counter value

according to the given counter width. The unbiased estimation

of the flow size could be obtained from

n̂1 = f(c1) =
1

a1
[(1 + a1)

c1 − 1]. (13)

The renormalization changes the parameter from a1 to a2,

and correspondingly, the counter value is decreased from c1
to c2. The estimation from c2 is as the following:

n̂2 = f(c2) =
1

a2
[(1 + a2)

c2 − 1]. (14)

Please note that the principle of the renormalization is to

keep the inverse estimations before and after the parameter

tuning as the same. Namely, (13) and (14) should provide the

same estimation. Therefore, we have,

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter a

U
til

ity

Accuracy Utility
Memory Utility

Equilibrium Tuning Point

Fig. 3. Finding the equilibrium tuning point.

1

a1
[(1 + a1)

c1 − 1] =
1

a2
[(1 + a2)

c2 − 1]; (15)

c2 = log{a2

a1
[(1 + a1)

c1 − 1] + 1}/ log(1 + a2). (16)

However, the calculation from (16) is not always integer

and we normalize the counter value with probability updates

as shown in Algorithm 3. Let X = log{a2
a1

[(1 + a1)
c1 − 1] +

1}/ log(1 + a2). The counter is renormalized to �X� with

probability x − �X�, and is reset to �X� with probability

1 − (x − �X�).

Algorithm 3 Renormalization

// The counter overflows to trigger a renormalization

X = log{a2
a1

[(1 + a1)
c1 − 1] + 1}/ log(1 + a2);

v = rand(0, 1); //A random variable between 0 and 1

if v ≤ (X − ceil(X)) then
//ceil(X) rounds X to the nearest integer towards infinity

c = ceil(X);

else
c = ceil(X) − 1;

end if

V. EVALUATION

In this section, we first prove that the renormalization

process does not introduce any error and ensure that the

estimation after renormalization is the same as the one before

renormalization.

Theorem 1: The expect error in renormalization process is

zero.

Proof: Let X = log{a2
a1

[(1 + a1)
c1 − 1] + 1}/ log(1 + a2)

From the Algorithm 3, the expected value of c2 can be

formulated as

E(c2) = �X� (X − �X�) + �X� (1 − X + �X�)
E(c2) = X

Namely, f(E(c2)) = f(c1).

191919191919191919191919

TABLE III
RELATIVE ERROR WITH AND WITHOUT RENORMALIZATION

Para. tuning No Yes
Real trace 0.89% 0.01%
Pareto Scenario 3.58% 0.05%
Exp. Scenario 3.7% 0.01%

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

flow size

co
un

te
r

va
lu

e without renormalization
with renormalization

Fig. 4. Grow of the counter value.

Next, we compared the performance of ANLS with and

without parameter tuning under real trace and synthetic traces.

We first employ a real trace collected on an OC-192 link [19].

Furthermore, In order to examine the effects of flow size

distribution, we generate synthetic data for a fully loaded

OC-48 (2.5 Gbps) link within a one-minute measurement

interval; therefore, the total number of packets in one minute

is 468,750,000 in the worst case where all the packets are

of 40 bytes. We first generate the flows whose sizes follow

Pareto distribution (the shape parameter is 1.053 and the

scale parameter is 4). We also synthesize data flows with an

exponentially distributed size (the location parameter λ = 500,

i.e., the mean flow size is 500).

Table III illustrates the relative error of ANLS with and

without parameter tuning under different traffic scenarios. In

the experiment, the counter width for ANLS without parameter

tuning is 16-bit and the counter width for ANLS with param-

eter tuning is 12-bit. Considering the 4-bit identification for

a value, ANLS with or without parameter tuning consumes

the same memory size. The results in Table III shows that

the accuracy is improved by about 89 times for real trace, 70

times for Pareto traffic scenario and 370 times for exponential

traffic, while giving the same memory size.

Figure 4 indicates the counter growth of ANLS with

and without counter renormalization. In this experiment, the

counter width is 12-bit, which means the largest counter value

is 4096. As what we analyze above, the counter value of

ANLS without parameter tuning is monotonously increasing

while ANLS with parameter tuning efficiently use the counter

resource by renormalizing the counter value when counter

overflows. The frequency and scope of the renormalization

is decreasing with the increase of flow size.

VI. RELATED WORK

Traditional counting system configures all the counters as

the same size causing inefficient for flow length counting.

Internet exhibits an “80-20” feature for its traffic pattern [20],

i.e., 80% of Internet packets are generated by 20% of the flows.

Based on this observation, a recent work in [14] proposed

BRICK (Bucketized Rank Index Counter) to organize efficient

“variable-length” counters. The basic idea of BRICK is intu-

itive and is based on statistical multiplexing, which bundles

groups of a fixed number (say 64) of counters that is randomly

selected from the array, into buckets. BRICK allocates just

enough bits to each counter in the sense that if its current

value is ci, BRICK allocates �lg(ci)� + 1 bits to it. Besides,

Counter Braids (CB) [17] is another novel counter organization

for accurate flow measurement, which builds a hierarchy of

counters braided via random graphs in tandem. CB allows the

sharing of counter bits and thus the required counter bits are

reduced. The motivations and gains of BRICK and CB are

essentially different from the proposed solution in this paper.

BRICK and CB reduce the total memory size by utilizing the

features/relationship among all the counters, but they do not

compress the size for each single counter. ANLS reduces the

total memory size by compressing every single counter. In fact

ANLS and BRICK/CB are complementary to each other and

can be combined to get further reduction of counter size.

A combined SRAM&DRAM (SD) counter architecture is

first proposed in [22]. A DRAM is utilized to store the full-

size counters and a SRAM is employed to enable counter

updates at line rate. The increments are first made only to

SRAM counters, and the values of each SRAM counter is

then committed to the corresponding DRAM counters before

being overflow. The key problem in this architecture is how

to design a Counter Management Algorithm (CMA) which

determines the order of the SRAM counters to be flushed to

DRAM counters. Different papers on the study of SD counter

in fact investigate the CMA. In [22], Largest Counter First

(LCF) algorithm is severed as CMA, which uses a heap-based

priority queue to select the closest counter to be overflowed

and then flush it to the DRAM. However, the SRAM memory

size to maintain such a heap is about two times of the memory

size to store the SRAM counters. A method to reduce the

CMA complexity is further investigated in [21] by the use

of an aggregated bitmap. In [25], the requirement on SRAM

counter size and the control memory are further reduced. The

authors in [25] employ a small write-back buffer to store

indices of the overflowed counters and a simple randomized

algorithm to statistically guarantee that SRAM counters do

not overflow in bursts. The contributions of the SD solutions

are significant for many application scenarios. However, SD

architecture has its limitations. First, the read accesses of SD

can only be done on DRAM side and thus is quite slow.

Second, SD also significantly increases the amount of traffic

between SRAM and DRAM across the system bus, which may

lead to a serious bottleneck in system design [14]. Third, it is a

trend to integrate measurement functions into routers; however,

202020202020202020202020

SD needs a dedicated SRAM and a dedicated DRAM, which

will consume extra pins connections and board areas. It could

be a big concern to implement it into an already crowded

router line card.

A pioneering work on sampling of network traffic is pub-

lished in [6], which uses static sampling for the purpose of

measuring on the NSFNET backbone. Event and time driven

sampling methods are studied in [6] to estimate statistics of

distributions of inter-arrival time and packet size. The primary

flow-level measurement tool used by network operators nowa-

days is NetFlow [3], which resorts to packet sampling (known

as sampled NetFlow [4]), to handle the large traffic volume

and diversity in high speed links. Considering the multi-hop

feature of most flows, several attempts [1, 11, 23] are initiated

to deploy the sampling system in a distributed manner for the

purpose of passive measurement, which addresses the tradeoff

between maximizing the measurement coverage of the network

and minimizing the deployment cost (the lower sampling rate

and less monitor beacons, the lower the deployment cost). The

“sample and hold” method is introduced in [9], which uses a

small and fast memory to process every packet in a real-time

manner. This method is used to capture large flows but not

for small flows. CATE is proposed in [10] to estimate the

proportion of each flow by making multiple comparisons for

each arrival and counting the number of coincidences. This

method is accurate for media-size and large-size flows but is

less accurate for small-size flows.

In the context of adaptive sampling, several mechanisms are

introduced for different purposes. Better NetFlow (BNF) was

proposed in [8] to improve memory utilization by an adaptive

linear sampling method. A relatively large sampling rate is

configured at the beginning of the measurement interval and

will adaptively decrease when possible memory overflow is

detected. A size-dependent sampling (SDS) mechanism was

presented in [7]. A flow whose size is larger than z is always

selected, while the flow with size x < z is sampled with prob-

ability x/z. The authors in [2] provided an important theorem

specifying the minimum number of packet samples required to

guarantee the expected relative error, and they also proposed

an adaptive random sampling (ARS) method. However, to

utilize their theorem, it is required to first estimate the total

packet amount using a linear auto-regressive (AR) prediction

model. The accuracy and the implementation complexity of

ARS are greatly restricted by the operations to determine the

AR model parameters. All the above methods optimize on

either the memory size or accuracy for medium to large flows,

but can not guarantee the estimation error for small flows.

VII. CONCLUSION

In this paper, we study the parameter self-tuning mechanism

for ANLS. ANLS has a predefined control parameter a, which

decides the measurement accuracy and counting range. Enlarg-

ing a will decrease the counter overflow possibility and de-

crease the measurement accuracy meanwhile. A modification

of ANLS has been proposed by adding a parameter self-tuning

algorithm. The parameter a is first set as zero in order to ANLS

counts every incoming packet without error. When the counter

overflows, a is adjusted to a larger value and the counter is

renormalized to a smaller value according to the reconfigured

a. The further update of the counter will be according to ANLS

with the new parameter a. The renormalization of the counter

value and the reconfiguration of a is triggered whenever the

counter overflows. Experiments under real trace and synthetic

traces demonstrated that the proposed method improve the

accuracy of ANLS tens of times.

REFERENCES

[1] G. Cantieni, G. lannaccone, C. Barakat, C. Diot, and P. Thiran. Reformu-
lating the monitor placement problem: Optimal network-wide sampling.
In 40th Annual Conference on Information Sciences and Systems, pages
1725 – 1731, 2006.

[2] B.-Y. Choi, J. Park, and Z.-L. Zhang. Adaptive random sampling for
load change detection. In ACM SIGMETRICS 2002, pages 272 – 273,
2002.

[3] Cisco. Cisco ios netflow data sheet. http://www.cisco.com.
[4] Cisco. Sampled netflow data sheet. http://www.cisco.com.
[5] K. Claffy and S. McCreary. Internet measurement and data analysis:

Passive and active measurement. http://www.caida.org.
[6] K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Application of sampling

methodologies to network traffic characterization. In ACM SIGCOMM
1993, pages 194–203, 1993.

[7] N. Duffield, C. Lund, and M. Thorup. Learn more, sample less: Control
of volume and variance in network measurement. IEEE Trans. Inform.
Theory, 51:1756–1775, 2005.

[8] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better netflow.
In ACM SIGCOMM 2004, pages 245 – 256, 2004.

[9] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In ACM SIGCOMM 2002, pages 323 – 336, 2002.

[10] F. Hao, M. S. Kodialam, T. V. Lakshman, and H. Zhang. Fast, memory-
efficient traffic estimation by coincidence counting. In IEEE INFOCOM
2005, 2005.

[11] C. Hu, B. Liu, Z. Liu, S. Gao, and D. O. Wu. Optimal deployment
of distributed passive measurement monitors. In ICC 2006, volume 2,
pages 621 – 626, 2006.

[12] C. Hu, S. Wang, B. Liu, and J. Tian. Control estimation error of sampling
method for passive measurement. In GLOBECOM 2007, pages 2576–
2580, Washington D.C., USA, 2007.

[13] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen. Accurate and
efficient traffic monitoring using adaptive non-linear sampling method.
In INFOCOM 2008, Phoenix, USA, 2008.

[14] N. HUA, B. Lin, J. J. Xu, and H. C. Zhao. Brick: A novel exact active
statistics counter architecture. In ANCS 2008, 2008.

[15] F. Khan, L. Yuan, C.-N. Chuah, and S. Ghiasi. A programmable
architecture for scalable and real-time network traffic measurements.
In ACM ANCS’08, 2008.

[16] A. Kumar and J. Xu. Sketch guided sampling – using on-line estimates
of flow size for adaptive data collection. In IEEE INFOCOM’06, 2006.

[17] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani.
Counter braids: A novel counter architecture for per-flow measurement.
In ACM SIGMETRICS, 2008.

[18] R. Morris. Counting large numbers of events in small registers. Commun.
ACM, 21(10):840–842, 1978.

[19] NLANR. Passive measurement and analysis (pma). http://pma.nlanr.net.
[20] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang. SIFT: a simple

algorithm for trucking elephant flows and taking advantage of power
laws. In the 43rd Allerton Conference on Communication, Control, and
Computing, 2005.

[21] S. Ramabhadran and G. Varghes. Efficient implementation of a statistics
counter architecture. In ACM SIGCOMM’03, 2003.

[22] D. shah, S. Iyer, B. Prabhakar, and N. McKeown. Maintaining statistics
counters in router line cards. IEEE Micro, 22(1):76–81, 2002.

[23] K. Suh, Y. Guoy, J. Kurose, and D. Towsley. Locating network monitors:
Complexity, heuristics, and coverage. In INFOCOM 2005, volume 1,
pages 351–361, 2005.

[24] G. Varghese and C. Estan. The measurement manifesto. ACM Computer
Communication Review, 34:9–14, 2004.

[25] Q. Zhao, J. J. Xu, and Z. Liu. Design of a novel statistics counter archi-
tecture with optimal space and time efficiency. In ACM SIGMETRICS
2006, 2006.

212121212121212121212121

